Уважаемые пользователи! Приглашаем Вас на обновленный сайт проекта: https://industry-hunter.com/
Фуллерен как основа для более эффективных смартфонов - ЭЛИНФОРМ
Информационный портал по технологиям производства электроники
Фуллерен как основа для более эффективных смартфонов - ЭЛИНФОРМ
На главную страницу Обратная связь Карта сайта

Скоро!

Событий нет.
Главная » Новости » Новости перспективных технологий » Фуллерен как основа для более эффективных смартфонов

Новости перспективных технологий

20 июля 2012

Фуллерен как основа для более эффективных смартфонов

Изображение с сайта science.compulenta.ru

Смартфоны широко шагают по планете, хотя по функциональности они ничто рядом с ноутбуками и тем более ПК. Мизерная оперативная память ограничивает количество одновременно и полноценно работающих приложений и косвенно ведёт к большому расходу энергии, перегревающему устройство и быстро «съедающему» батарею.

Исследователи из Тель-Авивского университета (Израиль) предлагают решить проблему при помощи... фуллереновых транзисторов.

Затвор (А) используется для активации молекулярных слоёв, расположенных вертикально (В) и отделённых от источника слоем оксида. Три карбоксильных «якоря» прикрепляют фуллерен к изолирующему слою оксидов. (Иллюстрация Elad Mentovich.)

Именно фуллерен (С60) позволил Эладу Ментовичу (Elad Mentovich) построить продвинутый транзистор, способный как выполнять функции оперативной памяти, так и накапливать энергию, подобно конденсатору. Этот молекулярный транзистор размером до пары нанометров способен хранить и передавать информацию на весьма высокой скорости. При этом, по словам разработчика, он потенциально вполне готов к массовому производству. И предварительные переговоры такого рода будто бы уже ведутся («с представителями ряда крупных компаний»).

Нынешняя оперативная память весьма габаритна и энергопрожорлива — по крайней мере по меркам смартфонов, рабов литиевых батарей. Решение проблемы на основе фуллереновых полевых транзисторов искали давно, но мешали два факта.

Во-первых, фуллерен при работе в атмосферном воздухе терял свою структуру и окислялся. Во-вторых, образцы с хорошей мобильностью электронов удалось получить, лишь выращивая (эпитаксиально) фуллереновые транзисторы при 250 ˚С. Гибкая электроника при этом не получалась, да и затраты на производство росли, и значительно. Но израильский исследователь нашёл выход из непростой ситуации. Вместо того чтобы наполнять ёмкость с транзистором азотной атмосферой, как предлагали другие, он окружил молекулы С60 слоем молекул оксида углерода. Сами они в качестве транзисторов не работают, но и атомам кислорода добраться до транзисторов на С60 не дают, что спасает последние от потери работоспособности.

Действительно серьёзной проблемой оказался подбор такого рода химических связей между изолирующим слоем оксида и фуллереном, который не разрушил бы со временем структуру последнего. Для этого г-н Ментович воспользовался карбоксильными связями, способными не только обеспечить устойчивое к повышению температуры соединение С60 с оксидом, но и не «убить» при этом саму молекулу-транзистор.

Соответствующая работа принята для публикации в журнале Applied Physics Letters.

Информация с сайта science.compulenta.ru со ссылкой на материалы Phys.Org.

Автор оригинального текста: Александр Березин.





Последние новости

АРПЭ провела практическую конференцию "Экспорт российской электроники"
подробнее
Портфельная компания РОСНАНО «РСТ-Инвент» разработала RFID-метки нового поколения WinnyTag Duo
подробнее
Научно-технический семинар «Электромагнитная совместимость. Испытательные комплексы для сертификационных и предварительных испытаний военного, авиационного и гражданского оборудования»
подробнее
Официальное представительство Корпорации Microsemi примет участие в выставке «ЭкспоЭлектроника» 2018
подробнее
Новое оборудование в Технопарке Зубово
подробнее
Избраны органы управления Технологической платформы «СВЧ технологии»
подробнее
«Рязанский Радиозавод» внедряет инструменты бережливого производства
подробнее
© “Элинформ” 2007-2024.
Информационный портал для производителей электроники:
монтаж печатных плат, бессвинцовые технологии, поверхностный монтаж, производство электроники, автоматизация производства